Scaling and Fluctuations of the Lyapunov Exponent in a 2D Anderson Localisation Problem

Yoichi Asada1, Keith Slevin1, Tomi Ohtsuki2, Lev I. Deych3,*, Alexander A. Lisyansky3, and Boris L. Altshuler4

1Department of Physics, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka-city, 560-0043 Osaka, Japan
2Department of Physics, Sophia University, 7-1 Kio-cho, Chiyoda-ku, Tokyo 102, Japan
3Department of Physics, Queens College of CUNY, Flushing, NY 11367, USA
4Physics Department, Princeton University and NEC Research Institute, Princeton NJ 08540, USA

(Received October 11, 2002)

KEYWORDS: localisation, Anderson model, fluctuation, scaling

In one-dimensional (1D) systems it is well known that the Lyapunov exponent (LE) has a normal distribution and that its average value \(\langle \gamma_{1D} \rangle \) is related to its variance \(\sigma_{1D}^2 \) by

\[\frac{\sigma_{1D}^2 L}{\langle \gamma_{1D} \rangle} = 1. \] (1)

Here \(\langle \ldots \rangle \) represents a statistical average over realizations of the random potential. Expression (1) was first conjectured by Anderson et al.1 and later derived by many different authors within the framework of the random phase approximation. A correct and rigorous criterion for the validity of (1) was established only much later.2,3 For a sufficiently long 1D system the logarithm of the dimensionless conductance \(g \) is approximately

\[\ln g \simeq -2\gamma L. \] (2)

Since a normal distribution is parameterised by its mean and variance, (1) establishes the single parameter scaling of the conductance distribution for 1D systems.

The objective of this paper is to establish a generalisation of (1) for the two dimensional Anderson model with diagonal disorder. We first investigate numerically the behaviour of the ratio on the l.h.s. of (1) in quasi-1D with diagonal disorder. We first investigate numerically

[Eq. 1]

\[H = \sum_i \epsilon_i c_i^\dagger c_i - \sum_{i<j} c_i^\dagger c_j. \] (4)

Site energies \(\epsilon_i \) are uniformly distributed on the interval \([-W/2, W/2]\).

Before proceeding we must extend the usual definition of the LE, involving the taking of the limit \(L \to \infty \) to finite length \(L \). We consider a quasi-1D sample with the length \(L \) and width \(M \) \((L \gg M)\). In the transverse direction we impose periodic boundary conditions. Our definition takes as its starting point the transfer matrix method of MacKinnon and Kramer.4 We consider a transfer matrix \(T_L \) which is a product of a transfer matrix \(X_i \) for each slice up to the length \(L \), \(T_L = \prod_{i=1}^{L} X_i \). We prepare a random orthogonal \(2M \times 2M \) matrix \(U_0 \). By repetition of a process involving several transfer matrix multiplication followed by a Gramm-Schmidt orthogonalization, we can express the matrix \(T_L U_0 \) as the product of an orthogonal matrix \(U_L \) and a right triangular matrix

\[T_L U_0 = U_L \begin{pmatrix} D^{(1)}_L & R^{(1,2)}_L & \cdots & R^{(1,2M)}_L \\ 0 & D^{(2)}_L & \cdots & R^{(2,2M)}_L \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & D^{(2M)}_L \end{pmatrix} \] (5)

We define the Lyapunov exponents \(\gamma^{(i)}_L \) for finite length from the diagonal part of the right triangular matrix in (5)

\[\gamma^{(i)}_L = \frac{1}{L} \ln D^{(i)}_L. \] (6)

In the present work, we concentrate on the statistics of the smallest positive Lyapunov exponent \(\gamma_L = \gamma^{(M)}_L \). The LE for finite length \(L \), defined in this way, is a random variable depending on the realisation of the random potential.

We study the dependence of the average \(\langle \gamma_L \rangle \) and its variance \(\sigma^2 \) on the strength of disorder \(W \), the energy \(E \), the width \(M \) and the length \(L \). The number of samples in each ensemble ranges from 1000 to 3000.

* lev_deych@qc.edu
We have taken \(L \) sufficiently large that the average \(\langle \gamma_L \rangle \) is independent of \(L \). In this limit its value is equal to the standard Lyapunov exponent defined in the limit \(L \to \infty \)
\[
\langle \gamma_L \rangle \simeq \gamma = \lim_{L \to \infty} \gamma_L. \quad (7)
\]
Thus the inverse of \(\langle \gamma_L \rangle \) is equal to the quasi-1D localisation length. Since, as is well known, this latter quantity obeys a one parameter scaling law we deduce that
\[
\langle \gamma_L \rangle M = F_\gamma \left(\frac{\xi}{M} \right) \quad (8)
\]
In the limit that \(M \gg \xi \) we expect that
\[
\langle \gamma_L \rangle M \to \frac{M}{\xi} \quad (9)
\]
Thus it seems reasonable to approximate the scaling function (8) by the expansion
\[
F_\gamma \left(\frac{\xi}{M} \right) = \frac{M}{\xi} + \sum_{n=0}^{n_\sigma} a_n \left(\frac{\xi}{M} \right)^n. \quad (10)
\]
Fitting our numerical data to this function, truncated at \(n_\sigma = 1 \), we obtain the localisation length \(\xi \) for each energy and disorder.

Next we consider the quantity \(\sigma^2 L \). For small \(L \), this depends on \(L \). However, we restrict attention here to \(L \) sufficiently large that \(\sigma^2 L \) becomes independent of \(L \) to within numerical accuracy. Since \(\langle \gamma_L \rangle \) is also independent of \(L \) in this limit, a one parameter scaling relationship of the form (3) between the mean and variance of LE is possible. Our numerical data are consistent with \(F_\sigma(\xi/M) \) approaching a constant value for large \(M/\xi \). Given this an expansion of the form
\[
F_\sigma \left(\frac{\xi}{M} \right) = \sum_{n=0}^{n_\sigma} b_n \left(\frac{\xi}{M} \right)^n \quad (11)
\]
is plausible. As none of the expansion coefficients is fixed, the absolute value of \(\xi \) and the fitting parameters \(b_n \) cannot be determined by fitting only to (11). To obtain their absolute values, we fix the localisation length at \(E = 0.0 \) and \(W = 7.0 \) as \(\xi = 20.63 \) according to the result of finite size scaling analysis of \(\langle \gamma_L \rangle M \) presented above. After that we use (11), truncated at \(n_\sigma = 4 \), to find the absolute values of the coefficients \(b_n \) and the two-dimensional localisation length \(\xi \) for each value of energy and disorder.

The data and scaling function \(F_\sigma(\xi/M) \) are shown in Fig. 1. It is seen that, within the accuracy of the simulation, all the data fall on a single curve confirming our assumption of a one parameter scaling for the variance as described by (3). The estimates of \(\xi \) obtained from the two analyses, based on the scaling of \(\sigma^2 L/\langle \gamma_L \rangle \) and of \(\langle \gamma_L \rangle M \), are in close agreement. This finding is strong evidence that the distribution of the LE in the two-dimensional Anderson model is described by a single parameter.

With decreasing \(M/\xi \), \(\sigma^2 L/\langle \gamma_L \rangle \) appears to approach unity consistent with the relation (1) for 1D. For large

\[
M/\xi, \sigma^2 L/\langle \gamma_L \rangle \text{ approaches the asymptotic value } b_0. \text{ We estimate}
\]
\[
b_0 = \lim_{M/\xi \to \infty} F_\sigma \left(\frac{\xi}{M} \right) = 0.13 \pm 0.01. \quad (12)
\]
This value is significantly smaller than the value of unity for one-dimensional systems indicating that the fluctuations in 2D systems are much weaker than in 1D systems.